Work hard. Be nice. 100% EVERYDAY.

Name:		Period:
Date:	Hyhrid Chemistry Regents Pren	Ms Hart/Mr Kuhnau

UNIT 5: Solutions and Gases

Lesson 3: Kinetic Molecular Theory and Ideal Gases!

By the end of today, you will have an answer to: Under what conditions does a gas behave like an ideal gas?

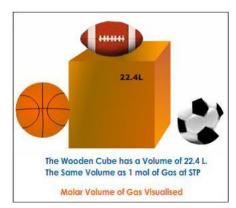
Do Now: QUIZ!

The Kinetic Molecular Theory (KMT) of Gases

 Defines the assumptions made about gases in order to simplify our understanding about the behavior of gases

	Postulate	Representation
1		
2		
3		
4		
5		

Work hard. Be nice. 100% EVERYDAY.


100%	EVERIDAI.
Brainstorm In reality gases are complicated	PRACTICE:
because	
	Under the same conditions of temperature and
	pressure, which of the following gases would behave
	most like an ideal gas?
	(1) He(<i>g</i>)
	(2) $NH_3(g)$
	$(3) \operatorname{Cl}_2(g)$
	$(4)CO_2(g)$

REAL GASES ACT LIKE IDEAL GASES WHEN AT:

Condition	Reason

How do we count gas particles?

- 1 mole (6.022 x 10²³ particles) of gas ALWAYS TAKES UP 22.4 L of space at STP
- At the same temperature, pressure, and volume, every gas has the same amount of particles REGARDLESS OF IDENTITY.

PRACTICE:

Which two samples of gas at STP contain the same total number of molecules?

- (1) 1 L of CO(g) and 0.5 L of $N_2(g)$
- (2) 2 L of CO(g) and 0.5 L of $NH_3(g)$
- (3) 1 L of $H_2(g)$ and 2 L of $Cl_2(g)$
- (4) 2 L of $H_2(g)$ and 2 L of $Cl_2(g)$

Closing thought:

Why do you think we can make this assumption that at the same temperature, volume, and pressure, the exact same number of gas particles are present?

Work hard. Be nice. 100% EVERYDAY.

Name:		Period:
Date:	Hybrid Chemistry Regents Prep	Ms. Hart/Mr. Kuhnau
CW 5.3—Kinetic Molecular Theo	ory and Ideal Gases	10 points

CW 5.3—Kinetic Molecular Theory and Ideal Gases

In-class Practice:

Directions: Answer the following questions based on your knowledge of chemistry.

- 1. The concept of an ideal gas is used to explain
 - (1) the mass of a gas sample
 - (2) the behavior of a gas sample
 - (3) why some gases are monatomic
 - (4) why some gases are diatomic
- 2. The kinetic molecular theory assumes that the particles of an ideal gas
 - (1) are in random, constant, straight-line motion
 - (2) are arranged in a regular geometric pattern
 - (3) have strong attractive forces between them
 - (4) have collisions that result in the system losing energy
- 3. A real gas behaves more like an ideal gas when the gas molecules are
 - (1) close and have strong attractive forces between them
 - (2) close and have weak attractive forces betweenthem
 - (3) far apart and have strong attractive forces between them
 - (4) far apart and have weak attractive forces between them
- Under which conditions of temperature and pressure would helium behave most like an ideal gas?
 - (1) 50 K and 20 kPa
 - (2) 50 K and 600 kPa
 - (3) 750 K and 20 kPa
 - (4) 750 K and 600 kPa
- 5. Under which conditions of temperature and pressure would a sample of H₂(g) behave most like an ideal gas?
 - (1) 0°C and 100 kPa
 - (2) 0°C and 300 kPa
 - (3) 150°C and 100 kPa
 - (4) 150°C and 300 kPa

- 6. At the same temperature and pressure, 1.0 liter of CO (g) and 1.0 liter of CO_2 (g) have
 - (1) equal masses and the same number of molecules
 - (2) different masses and a different number of molecules
 - (3) equal volumes and the same number of molecules
 - (4) different volumes and a different number of molecules
- 7. A sample of oxygen gas is sealed in container X. A sample of hydrogen gas is sealed in container Z. Both samples have the same volume, temperature, and pressure. Which statement is
 - (1) Container X contains more gas molecules than container Z.
 - (2) Container X contains fewer gas molecules than container Z.
 - (3) Container X and Z both contain the same number of gas molecules.
 - (4) Containers X and Z both contain the same mass of gas.
- 8. The table below shows data for the temperature, pressure, and volume of four gas samples

Data for Four Gas Samples

Gas	Temperature	Pressure	Volume
Sample	(K)	(atm)	(mL)
А	100.	2	400.
В	200.	2	200.
С	100.	2	400.
D	200.	4	200.

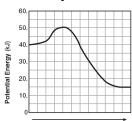
Which two gas samples have the same total number of molecules?

- (1) A and B
- (2) A and C
- (3) B and C
- (4) B and D

Work hard. Be nice.

- 9. The kinetic molecular theory assumes that the particles of an ideal gas
 - (1) move in curves, avoiding colliding with each other and walls
 - (2) are arranged in a regular geometric pattern
 - (3) have no attractive forces between them
 - (4) have collisions that result in the system losing energy
- 10. Under which conditions would gases behave most like ideal gases?
 - (1) High temperature and high pressure
 - (2) Low temperature and low pressure
 - (3) High temperature and low pressure
 - (4) Low temperature and high pressure
- 11. How many liters of $O_2(g)$ would occupy the same volume as 2 L of $CO_2(g)$ at 298 K and 1.0 atm of pressure?
- 12. Given the balanced equation representing a reaction:

$$CH_4(g) + 2O_9(g) \rightarrow 2H_2O(g) + CO_9(g) + heat$$


Which statement is true about energy in this reaction?

- (1) The reaction is exothermic because it releases heat.
- (2) The reaction is exothermic because it absorbs heat.
- (3) The reaction is endothermic because it releases heat.
- (4) The reaction is endothermic because it absorbs heat.
- 13. What is the ΔH for the reaction in #12? (Use Table I) _____
- 14. Which change is exothermic? (Use Table I)
 - (1) freezing of water
- (2) melting of iron
- (3) vaporization of ethanol
- (4) sublimation of iodine
- 15. Given the balanced equation:

$$4\mathrm{Fe}(s) + 3\mathrm{O}_2(g) \rightarrow 2\mathrm{Fe}_2\mathrm{O}_3(s) + 1640\;\mathrm{kJ}$$

Which phrase best describes this reaction?

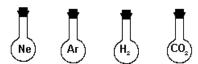
- (1) endothermic with $\Delta H = +1640 \text{ kJ}$
- (2) endothermic with ΔH = -1640 kJ
- (3) exothermic with $\Delta H = +1640 \text{ kJ}$
- (4) exothermic with $\Delta H = -1640 \text{ kJ}$
- 16. Which statement correctly describes an endothermic chemical reaction?
 - (1) The products have higher potential energy than the reactants, and the ΔH is negative.
 - (2) The products have higher potential energy than the reactants, and the ΔH is positive.
 - (3) The products have lower potential energy than the reactants, and the ΔH is negative.
 - (4) The products have lower potential energy than the reactants, and the ΔH is positive.
- $17. \ Given \ the \ potential \ energy \ diagram \ for \ a \ chemical \ reaction:$

Reaction Coordinate

Which statement correctly describes the energy changes that occur in the forward reaction?

- (1) The activation energy is 10 kJ and the reaction is endothermic
- (2) The activation energy is 10 kJ and the reaction is exothermic
- (3) The activation energy is 50 kJ and the reaction is endothermic
- (4) The activation energy is 50 kJ and the reaction is exothermic

Name:		Period:
Date:	Hybrid Chemistry Regents Prep	Ms. Hart/Mr. Kuhnau


HW 5.3—Kinetic Molecular Theory and Ideal Gases

10 points

REGENTS PRACTICE:

- 1. An ideal gas is made up of gas particles that
 - (1) have volume
 - (2) can be liquified
 - (3) attract each other
 - (4) are in random motion
- 2. A sample of a gas is contained in a closed rigid cylinder. According to kinetic molecular theory, what occurs when the gas inside the cylinder is heated?
 - (1) The number of gas molecules increases.
 - (2) The number of collisions between gas molecules per unit time decreases.
 - (3) The average velocity of the gas molecules increases.
 - (4) The volume of the gas decreases.
- 3. Equal volumes of $SO_2(g)$ and $O_2(g)$ at STP contain the same number of
 - (1) atoms
 - (2) molecules
 - (3) electrons
 - (4) protons
- 4. One reason that a real gas deviates from an ideal gas is that molecules of the real gas have
 - (1) a straight line motion
 - (2) no net loss of energy on collision
 - (3) a negligible volume
 - (4) forces of attraction for each other

5.

The diagram represents four 500-milliliter flasks. Each contains the gas represented by the symbol. All gas samples are at STP. Each flask contains the same number of

- (1) atoms, only
- (2) molecules, only
- (3) atoms and molecules
- (4) atoms but different number of molecules

- 6. Which of the following gases behaves most like an ideal gas?
 - (1) $H_2(g)$
 - (2) $O_2(g)$
 - (3) $NH_3(g)$
 - (4) $CO_2(g)$
- 7. A sample of $H_2(g)$ and a sample of $N_2(g)$ at STP contain the same number of molecules. Each sample must have
 - (1) the same volume, but a different mass
 - (2) the same mass, but a different volume
 - (3) both the same volume and the same mass
 - (4) neither the same volume nor the same mass

8.

Sample	Substance	Temperature (K)	Pressure (atm)	Volume (L)
A	He	273	1	22.4
В	O_2	273	1	22.4
C	Ne	273	2	22.4
D	N ₂	546	2	44.8
E	Ar	546	2	44.8

The table shows the temperature, pressure, and volume of five samples. Which sample contains the same number of molecules as sample *A*?

- (1) E
- (2) B
- (3) C
- (4) D
- 9. Suppose you have two balloons, one filled with helium and the other with carbon dioxide. The pressure, temperature, and volume of the two gases are identical.
 - a) Why is the mass of the carbon dioxide balloon greater?
 - b) What do you know about the number of atoms in the balloons?

Work hard. Be nice.

Your second homework assignment is to complete test corrections on your Unit 4 test below. Use the supports in place for this class if you help! No excuses!

Question #:	Original Answer:	Correct Answer:
Explanation:		
Question #:	Original Answer:	Correct Answer:
Explanation:	original financii	doi i det i indiveri
Explanation.		
Question #:	Original Answer:	Correct Answer:
Explanation:		
Question #:	Original Answer:	Correct Answer:
Explanation:	Original Answer:	COLLECT AUSWELL
Explanation.		
Question #:	Original Answer:	Correct Answer:
Explanation:		

